РОБОТА №3

Взаємодія контролера Arduino з програмою Node-RED

Meta: дослідження взаємодії Node-RED з мікроконтролером Arduino через послідовний порт.

Завдання: навчитися приймати дані в комп'ютер з плати Arduino, використовуючи програмне середовище Node-RED.

Обладнання: мікроконтролер Arduino, проводи, датчик DHT11, USB-кабель.

Загальні відомості

Існує кілька способів взаємодії мікроконтролера Arduino з Node-RED. Зокрема, це передача даних через послідовний порт Serial, через протокол передачі даних Firmata, або з допомогою бібліотеки Jonny Five. Усі ці способи передбачають підключення Arduino до комп'ютера через USB.

Використання послідовного порта Serial вважається найпростішим та найпоширенішим способом взаємодії. Однак, особливістю такого способу є неможливість одночасної роботи з мікроконтролером через середовище Arduino IDE та Node-RED.

Хід виконання роботи

1. Використовуючи Arduino UNO, датчик DHT11 та з'єднувальні проводи, змонтуйте наступну схему (рис. 3.1):

Рисунок 3.1 – Схема підключення модуля DHT11

2. Підключіть Arduino Uno до комп'ютера та за допомогою середовища програмування Arduino Studio вивантажте на плату наступний скетч:

```
#include "DHT.h"
#define DHTPin 2
#define DHTTYPE DHT11
DHT dht (DHTPin, DHTTYPE);
void setup()
{
  dht.begin();
  Serial.begin(9600);
}
void loop()
  float h = dht.readHumidity();
  float t = dht.readTemperature();
  Serial.print(String(h));
  Serial.print(", ");
  Serial.println(String(t));
  delay(2000);
```

Відкрийте вікно Serial Monitor та переконайтеся, що дані з датчика DHT11 надходять коректно та відображаються як показано на рисунку 3.2.

∞ COM4	-		×
		Наді	слати
70.00, 19.00			^
70.00, 19.00			
70.00, 19.00			
70.00, 19.00			
			*
✓ Автопрокручування ☐ Показати позначки часу Без закінчення рядка 9600	бод 🗸	Очистити	вивід

Рисунок 3.2 – Вивід результатів вимірювання в Serial Monitor

Після цього закрийте середовище Arduino IDE.

3. Встановіть додатковий модуль Node-RED *node-serialport* (забезпечує передачу даних через послідовний порт).

В командному рядку виконайте команду:

npm install node-red -node-serialport

Примітка: додаткові модулі можна встановити не лише з командного рядка через менеджер пакетів, але й через менеджер палітри компонентів Node-RED.

4. Запустіть Node-RED.

В командному рядку виконайте наступну команду (рис. 3.3):

node-red

Рисунок 3.3 – Запуск Node-RED

5. Створіть новий проект в середовищі Node-RED.

В будь-якому браузері зайдіть за адресою <u>http://127.0.0.1:1880/</u>. Виберіть з палітри вузлів і розмістіть на робочій області наступні вузли:

- network -> serial in
- *common -> debug* (2 вузли)
- dashboard -> gauge (2 вузли)

та з'єднайте їх між собою як показано на рисунку 3.4:

Рисунок 3.4 – З'єднання вузлів

6. Встановіть необхідні налаштування вузлів.

Почергово зайдіть подвійним кліком в налаштування кожного вузла та внесіть відповідні зміни (рис. 3.5 – 3.9).

Оновлена схема повинна виглядати як на рисунку 3.10.

Edit serial in node	Edit serial in node > Edit serial-port node
Delete	one Delete Cancel Update
© Properties	Properties
ズ Serial Port Add new serial-port ✓	ג Serial Port COM4 Q
Name Name	 Settings Baud Rate Data Bits Parity Stop Bits 9600 8 None 1 1 DTR RTS CTS DSR auto auto auto auto auto auto auto auto

Рисунок 3.5 – Налаштування вузла Serial

Delete	rties	Cancel	Done
r Fiope			
Name	Температура		
🔅 Se	tup On Start On Message	On Stop	
1	<pre>var output = msg.payload.split(",");</pre>		
2	<pre>var h = parseFloat(output[0]);</pre>		
3	<pre>var t = parseFloat(output[1]);</pre>		
4	<pre>var msg_h = { payload: h };</pre>		
5	<pre>var msg_t = { payload: t };</pre>		
6	return [msg_t];		
	J		

Рисунок 3.6 – Налаштування вузла function 1

Edit gauge node	
Delete	Cancel Done
Properties	* 1
I Group	[Вкладка 1] Група 1 🗸 🗸
ច្រាំ Size	auto
і≣ Туре	Gauge ~
] Label	Температура
∑ Value format	{{value}}
∑ Units	units
Range	min -20 max 60
Colour gradient	
Sectors	-20 optional optional 60

Рисунок 3.7 – Налаштування вузла gauge 1

Prope	rties	•
Name	Вологість	
Se Se	On Start On Message On Stop	
1	<pre>var output = msg.payload.split(",");</pre>	
2	<pre>var h = parseFloat(output[0]); var t = parseFloat(output[1]);</pre>	
4	<pre>var msg_h = { payload: h };</pre>	_
5	<pre>var msg_t = { payload: t };</pre>	
6	return [msg_n];	

Edit gauge node	
Delete	Cancel Done
Properties	
I Group	[Вкладка 1] Група 1 🗸 🗸
៉្រារ៉ូ Size	auto
і≣ Туре	Gauge ~
<u> </u>	Вологість
	{{value}}
1 1 Units	units
Range	min 0 max 100
Colour gradient	
Sectors	0 optional optional 100

Рисунок 3.9 – Налаштування вузла gauge 2

Рисунок 3.10 – Оновлена схема

Впровадьте зміни в проект, натиснувши кнопку Full у випадаючому меню Deploy.

7. Переконайтесь, що дані з Arduino надходять коректно.

Перейдіть на вкладку debug. Отримані значення температури та вологості повинні відображатися як на рисунку 3.11.

Рисунок 3.11 – Відображення отриманих у вкладці debug

11. Перевірте роботу графічного користувацького інтерфейсу.

У вікні dashboard за допомогою кнопки Г перейдіть на сторінку графічного користувацького інтерфейсу. Результат повинен відображатися як на рисунку 3.12.

Примітка: перейти на сторінку графічного користувацького інтерфейсу можна також за адресою <u>http://127.0.0.1:1880/ui</u>

Рисунок 3.12 – Відображення значень у графічному інтерфейсі